Vorhang auf für ctd.qmat! Wir feiern die Premiere unseres neuen Namens mit einem Quantensound des Loop-Künstlers Konrad Kuechenmeister.
Aparajita Singha kann einzelne magnetische Momente in Quantenmaterialien messen – eine wichtige Grundlage für zukünftige Quantentechnologien. Ihre Professur für „Nanoskalige Quantenmaterialien“ des Würzburg-Dresdner Exzellenzclusters ctd.qmat ist jetzt an der TU Dresden gestartet.
Internationales Experiment bestätigt Supraleitungs-Theorie von Würzburger Physik-Team: Cooper-Paare können in Kagome-Metallen wellenförmig verteilt sein. Das öffnet den Weg für neue Anwendungen wie supraleitende Dioden.
Unter dem neuen Namen ctd.qmat – Complexity, Topology and Dynamics in Quantum Matter hat das Würzburg-Dresdner Exzellenzcluster jetzt seinen Antrag für die 2. Förderperiode von 2026 bis 2032 im Exzellenzwettbewerb von Bund und Ländern eingereicht.
Topologische Quantenmaterialien gelten als Hoffnungsträger für die Hightech der Zukunft. Der Nachweis ihrer außergewöhnlichen Eigenschaften war bisher jedoch sehr aufwendig. Jetzt haben Forschende des Exzellenzclusters ct.qmat eine experimentelle Methode entwickelt, mit der sich zweidimensionale topologische Materialien im Schnelltest systematisch nachweisen lassen.
Die süße, halb tote Katze Q liebt Chips, Kalte Chips. Das Schmusetier ist Hauptfigur und Namensgeberin des ersten Escape Rooms zur Quantenphysik in Deutschland für Kinder und Jugendliche, der gerade in den Technischen Sammlungen Dresden entsteht. Das Dresden-Würzburger Exzellenzcluster ct.qmat lädt am 8. und 9. März 2024 während des SPIN 2030 Wissenschaftsfestivals in Dresden zur Preview dieser verrückten Quantenwohnung ein: Die Besucher:innen können den Kalte-Chips-Puzzletisch aus der „Quantenküche“ live ausprobieren.
Dresdner Physiker entdecken die Quelle einzigartiger Oberflächensupraleitung, veröffentlicht in der Zeitschrift Nature.
Quantenphysiker:innen aus Dresden und Würzburg ist ein Durchbruch gelungen: Erstmals realisierten sie ein Halbleiter-Bauelement, bei dem ein bestimmtes Quantenphänomen für höchste Robustheit sowie außergewöhnliche Sensibilität sorgt. Der topologische Skin-Effekt schützt die Funktionalität des Bauteils vor äußeren Einflüssen und ermöglicht extrem empfindliche Messungen.
Nature Physics publizierte die Ergebnisse.
Elena Hassinger ist unkonventionellen Supraleitern auf der Spur, die dem topologischen Quantencomputing zum Durchbruch verhelfen könnten. Jetzt hat die Tieftemperaturphysikerin europäische Forschungsgelder in Höhe von 2,7 Millionen Euro erhalten.
Experimentalphysiker des Würzburg-Dresdner Exzellenzclusters ct.qmat haben erstmals den neuen „Spinaron“-Quanteneffekt nachgewiesen. Damit steht der Kondo-Effekt auf dem Prüfstand – ein theoretisches Konzept, das seit den 1980er-Jahren als Standardmodell für die Wechselwirkung magnetischer Materialien mit Metallen gilt.Die Forschungsergebnisse wurden in der Fachzeitschrift Nature Physics veröffentlicht.
Quantenherausforderung gemeistert: Ein fünfköpfiges Team um Quantenphysiker Prof. Ronny Thomale vom Exzellenzcluster ct.qmat der Universitäten Würzburg und Dresden hat beim internationalen IBM Quantum Open Science Prize den 2. Preis gewonnen. Die Forschungsgruppe entwickelte einen Algorithmus, mit dem sich der 16-QuBit-Quantenchip von IBM trainieren lässt, um künftig klassische Rechenleistungen zu überflügeln.
Herausragende Vorträge, ausgezeichnete Poster sowie „Socialising“ mit Marshmallow-Challenge und Spaghetti-Turm: Vom 20. bis 22. März fand das Retreat 2023 des Würzburg-Dresdner Exzellenzclusters ct.qmat in Bayreuth statt. Drei Tage, die geprägt waren vom Austausch über neueste Ergebnisse aus den Cluster-Areas Topologische Elektronen (A), Quantenmagnetismus (B) sowie Topologische Photonik (C) und vielen persönlichen Begegnungen.
Ein Dresdner Forschungsteam um den Festkörperphysiker Dr. Axel Lubk hat es geschafft, das Magnetfeld winziger magnetischer Nanowirbel – Skyrmionen genannt – mit einer sieben Millionstel Millimeter genauen Auflösung dreidimensional abzubilden. Das ist zum ersten Mal überhaupt gelungen.